Calibration code / understanding

Not much progress on this, got distracted by:

Everything’s better under the C (a quick poke at the frame flex value).

But I did try a quick manual iteration of doing short descents (100) multiple times, weighted average of the results, then using that as the input for another round, with the area the initial sample is taken from decreasing each time.

I started with a roughly-right frame measurement (in unstretched-belt-mm), and only did 10 samples-with-100-descents in each step as this seemed like the lowest I was likely to get anything from. And I did 3 iterations, sample ± 50mm in the first, then ±25mm, then ±12mm.

Fitness TL X TL Y TR X TR Y BL X BL Y BR X BR Y
1st round 100
plus minus 50mm
0.5715 -10.3 2314 2868.6 2327.9 0 0 2890.1 0
0.5041 3.9 2330.4 2875.4 2320.8 0 0 2890.9 0
0.4197 7.8 2319.8 2899 2291.6 0 0 2903.3 0
0.3712 7.6 2293.5 2924.9 2258.8 0 0 2924.6 0
0.6179 -16 2298.2 2878.9 2315.7 0 0 2897.2 0
0.4399 -10.7 2264.1 2898.2 2292.5 0 0 2929.9 0
0.2687 14 2307.9 2924.8 2258.9 0 0 2918.8 0
0.6162 -10.9 2286.6 2887.6 2305.1 0 0 2911.5 0
0.6118 -0.8 2324.3 2876.3 2319.3 0 0 2891.3 0
0.9893 -7.2 2273.6 2910.8 2276.3 0 0 2925.8 0
Weight total
5.4103
Weighted
-5.88645 1322.451 1639.4049 1330.39485 0 0 1651.69215 0
1.96599 1174.75464 1449.48914 1169.91528 0 0 1457.30269 0
3.27366 973.62006 1216.7103 961.78452 0 0 1218.51501 0
2.82112 851.3472 1085.72288 838.46656 0 0 1085.61152 0
-9.8864 1420.05778 1778.87231 1430.87103 0 0 1790.17988 0
-4.70693 995.97759 1274.91818 1008.47075 0 0 1288.86301 0
3.7618 620.13273 785.89376 606.96643 0 0 784.28156 0
-6.71658 1409.00292 1779.33912 1420.40262 0 0 1794.0663 0
-0.48944 1422.00674 1759.72034 1418.94774 0 0 1768.89734 0
-7.12296 2249.27248 2879.65444 2251.94359 0 0 2894.49394 0
Weighted Totals
-22.98619 12438.62314 15649.72537 12438.16337 0 0 15733.9034 0
Weighted Averages
-4.248598044 2299.063479 2892.579962 2298.978498 0 0 2908.138809 0
2nd round 100
plus minus 25mm
0.8812 12 2308.4 2881.8 2280 0 0 2932.3 0
0.8812 -1.6 2304.6 2868.4 2314.6 0 0 2930.1 0
0.8812 -11 2308.7 2898.3 2308.1 0 0 2927.9 0
0.8812 14.7 2324 2869.7 2273.5 0 0 2931.8 0
0.9488 -5.5 2285.4 2909.1 2278.4 0 0 2918 0
1.0708 -7.2 2294.5 2895.3 2295.6 0 0 2909.1 0
0.8877 -4.3 2308.1 2888.3 2304.3 0 0 2901 0
0.8812 5.7 2311.3 2915.8 2277.1 0 0 2908.8 0
0.8812 -5.2 2276.4 2908 2307.9 0 0 2904.9 0
0.9302 -4.6 2292 2904.8 2283.8 0 0 2913.6 0
Weight total
9.1247
Weighted
10.5744 2034.16208 2539.44216 2009.136 0 0 2583.94276 0
-1.40992 2030.81352 2527.63408 2039.62552 0 0 2582.00412 0
-9.6932 2034.42644 2553.98196 2033.89772 0 0 2580.06548 0
12.95364 2047.9088 2528.77964 2003.4082 0 0 2583.50216 0
-5.2184 2168.38752 2760.15408 2161.74592 0 0 2768.5984 0
-7.70976 2456.9506 3100.28724 2458.12848 0 0 3115.06428 0
-3.81711 2048.90037 2563.94391 2045.52711 0 0 2575.2177 0
5.02284 2036.71756 2569.40296 2006.58052 0 0 2563.23456 0
-4.58224 2005.96368 2562.5296 2033.72148 0 0 2559.79788 0
-4.27892 2132.0184 2702.04496 2124.39076 0 0 2710.23072 0
Weighted Totals
-8.15867 20996.24897 26408.20059 20916.16171 0 0 26621.65806 0
Weighted Averages
-0.894130218 2301.034442 2894.14453 2292.257467 0 0 2917.537898 0
3rd round 100
plus minus 12mm
1.0259 -4.5 2291.4 2902.7 2286.6 0 0 2914.4 0
0.9889 -4.5 2291.9 2903.3 2285.6 0 0 2913.8 0
0.9364 -3.4 2300.3 2897.2 2293.3 0 0 2908.2 0
0.8446 -1.8 2301.4 2898.4 2291.9 0 0 2908.8 0
0.8978 -5.6 2307.4 2888.2 2304.1 0 0 2900.2 0
1.003 -6.4 2300.7 2891.3 2300.5 0 0 2904.7 0
0.8056 -1.1 2301.8 2899 2291.1 0 0 2909.1 0
1.0501 -5 2293.5 2900.2 2289.4 0 0 2912.1 0
0.8971 -3.5 2306.8 2890.2 2302 0 0 2902.9 0
1.0043 -5.3 2287.3 2906.4 2281.8 0 0 2916.6 0
Weight total
9.4537
Weighted
-4.61655 2350.74726 2977.87993 2345.82294 0 0 2989.88296 0
-4.45005 2266.45991 2871.07337 2260.22984 0 0 2881.45682 0
-3.18376 2154.00092 2712.93808 2147.44612 0 0 2723.23848 0
-1.52028 1943.76244 2447.98864 1935.73874 0 0 2456.77248 0
-5.02768 2071.58372 2593.02596 2068.62098 0 0 2603.79956 0
-6.4192 2307.6021 2899.9739 2307.4015 0 0 2913.4141 0
-0.88616 1854.33008 2335.4344 1845.71016 0 0 2343.57096 0
-5.2505 2408.40435 3045.50002 2404.09894 0 0 3057.99621 0
-3.13985 2069.43028 2592.79842 2065.1242 0 0 2604.19159 0
-5.32279 2297.13539 2918.89752 2291.61174 0 0 2929.14138 0
Weighted Totals
-39.81682 21723.45645 27395.51024 21671.80516 0 0 27503.46454 0
Weighted Averages
-4.211771053 2297.878762 2897.86118 2292.415156 0 0 2909.280445 0

The output of the 3rd round (equiv to 3000 descents in the normal algorithm) Is pretty good, the TLX is slightly off - looking at the data it looks like you get a spread of potential values, possibly bimodal, which is interesting. I have wondered if doing a grid of points is giving us sampling artifacts and we should be doing (still stratified) random sample points for the calibration, that’s for another day though.

1 Like